Фототранзисторы: принцип действия, основные режимы. Фоторезисторы, фотодиоды, фототранзисторы

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото – фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор :

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ :

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки , что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.


Фото – простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

  1. Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
  2. Фотореле;
  3. Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.


Фото – обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото – формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Пример использования

Если Вы хотите своими руками сделать устройство, для которого необходим фототранзистор, можно разработать простую интеллектуальную систему. Робот по этой схеме будет реагировать на свет, в зависимости от настройки, он будет от него убегать или наоборот, выходить на источник освещения.

Чтобы самому сделать робота, необходимо приготовить:

  1. Микросхему L293D;
  2. Небольшой моторчик, можно взять даже от детской игрушки;
  3. Любые отечественные фототранзисторы и полевые резисторы с сопротивлением на менее 200 Ом;
  4. Кабеля для соединения и корпус, где будет расположен механизм.

Схема робота

Как видно по схеме, фототранзистор здесь – это своеобразный микроконтроллер, как ATMEGA, который определяет источник света, даже его подключение аналогично. Вы можете при использовании паяльника сделать простой механизм, который будет следовать даже за тенью. Подобные импортные приборы выпускает компания BEAM, но, естественно, там более мощная оптопара. Для работы устройства Вам нужно только правильно подключить фототранзистор к схеме и питанию.

На обозначении есть пункты GDR и VCC. Первое – это заземление, второе – питание. Обратите внимание, рядом с питанием стоит значок 5В – это значит, что батарея должна быть минимум на 5 вольт.

Принцип действия такого робота прост: когда свет попадает на фототранзистор, на микросхеме происходит включение мотора. Это реализуется, потому что приемник подал положительный сигнал. Заводится самодельный мотор и прибор начинает двигаться.

Использование резистора в этой схеме необходимо для регулировки электрического тока. Также от сопротивления резистора зависит долговечность оптической детали, если он перегреется – то фототранзистору потребуется замена. Для работы очень важно подключить все провода также, как и на схеме. Выключатель к роботу можно приделать от обычной шариковой ручки, он будет разрывать связь между микросхемой и фототранзистором. Проверка робота производится путем исследования его реакции на свет и тень.

Фототранзистором называют полупроводниковый управляемый оптическим излучением прибор с двумя p–n переходами.

Фототранзисторы, как и обычные транзисторы могут быть p–n–р и n–p–n типа. Конструктивно фототранзистор выполнен так, что световой поток облучает область базы. Наибольшее практическое применение нашло включение фототранзистора в схеме с ОЭ, при этом нагрузка включается в коллекторную цепь. Входным сигналом фототранзистора является модулированный световой поток, а выходным – изменение напряжения на резисторе нагрузки в коллекторной цепи.

Напряжение питания на фототранзистор подают как и на обычный биполярный транзистор, работающий в активном режиме, т.е. эмиттерный переход смещен в прямом направлении, а коллекторный в обратном (рис. 8.11,а).

Рис. 8.11. Схемы включения фототранзистора с подключенной базой (а) и со свободной базой (б) и вольтамперные характеристики

Однако он может работать и с отключенным выводом базы (рис. 8.11,б), а напряжение прикладывается между эмиттером и коллектором. Такое включение называется включением с плавающей базой и характерно только для фототранзисторов. При этом фототранзистор работает в активном режиме ближе к границе отсечки.

При Ф = 0 ток очень мал и равен темновому току

где h 21б – коэффициент передачи эмиттерного тока.

Рассмотрим принцип работы фототранзистора при включении с плавающей базой. При освещении фототранзистора под действием света в базовой области и коллекторном переходе образуются свободные носители заряда, эти носители диффундируют в базе к коллекторному переходу. Неосновные носители области базы (для транзистора n–p–n типа) – электроны экстрагируют в область коллектора, создавая фототок в коллекторном переходе. Оставшиеся в объеме базы основные носители (дырки), создают положительный объемный заряд и компенсируют заряд неподвижных ионов примесей на границе эмиттерного перехода.

Потенциальный барьер эмиттерного перехода снижается, что увеличивает инжекцию основных носителей (электронов) в область базы. Часть этих электронов рекомбинирует в базе с дырками, а большая часть экстрагирует через коллекторный переход, увеличивая его ток. Таким образом, ток в коллекторной цепи равен сумме фототока I ф и тока I к, инжектированных эмиттером электронов, дошедших к коллекторному переходу и втянутых его электрическим полем в область коллектора. При R к = 0, коэффициент усиления фототока равен

. (8.10)

Фототранзистор увеличивает чувствительность в h 21э +1 раз по сравнению с фотодиодом, что является главным преимуществом фототранзистора по сравнению с фотодиодом.

Для обеспечения температурной стабильности энергетических параметров одновременно с оптическим управлением используется так же подача напряжения смещения на базу для выбора рабочей точки на входной и выходной характеристиках транзистора. При отсутствии оптического потока темновой ток определяется током базы, что позволяет дополнительно управлять током фототранзистора. Задание определенного темнового тока позволяет обеспечить оптимальный режим усиления слабых световых сигналов, а также суммировать их с электрическими.


Наряду с фототранзисторами n–p–n и p–n–р типов используются полевые фототранзисторы с управляющим p–n переходом и МОП-транзисторы.

На рис. 8.12 представлен полевой фототранзистор с управляющим

p–n переходом и каналом n–типа. Падающий световой поток генерирует в n–канале и p–n переходе (канал–затвор) электроны и дырки. Электрическое поле перехода разделяет носители заряда. Концентрация электронов в n–канале повышается, и уменьшается его сопротивление, а ток стока возрастает. Увеличение дырок в p–области вызывает появление фототока в цепи затвора.

Рис.8.12. Структурная схема полевого фототранзистора с управляющим p-n переходом и каналом n- типа

Переход затвор–канал можно рассматривать как фотодиод, фототок которого I з (ток затвора) создает падение напряжения на резисторе R з, что приводит к уменьшению обратного напряжения на p–n переходе канал–затвор. Это вызывает дополнительное увеличение толщины канала, уменьшение его сопротивления и приводит к возрастанию тока стока.

МОП-фототранзисторы с индуцированным каналом имеют полупрозрачный затвор, через который световой поток попадает на полупроводник под затвором. В этой области полупроводника генерируются носители заряда, что приводит к изменению значения порогового напряжения, при котором возникает индуцированный канал. Для установления начального режима иногда на затвор подают напряжение смещения.


Нашел схему простого фотореле, что бы сделать настенные часики с подсветкой, ночь наступает в часах светодиод загорается,но не нашел фототранзистор, бывает так, что хочется, а нет….

Решил изготовить самостоятельно из советского транзистора МП42.

Изучаем материальную базу.
Фототранзистор - это полупроводниковый прибор преобразующий оптическое излучение в электрический сигнал и одновременно усиливает его. Коллекторный ток у транзистора зависит от интенсивности излучения. Коллекторный ток тем больше, чем интенсивнее свет попадает на базовую зону фототранзистора.

Два режима работы фототранзистора:
Режим с плавающей базой. Работает только вывод эмиттера и вывод коллектора.
Режим транзисторный с источником смещения базовой цепи. Работают все три вывода плюс резистор на базовом выводе.
Ошибки при изготовлении фототранзистора из мп42.

Ни в коем случае не спиливать крышку сверху! Это приведёт к неминуемому сдвигу кристаллодержателя и порче кристалла или обрыву подводящих проводников. Приведет к 100% облому в изготовлении фототранзистора. Даже если спилите удачно свет не будет попадать на базовую зону кристалла!

Не отрезайте базовый вывод фототранзистора, так как есть схемы которые используют именно этот вывод.
Ни чем не заполняйте окно фототранзистора. Произойдет термическая порча кристалла.

Приступим к производству фототранзистора. Как и все транзисторы МП 42 имеет три вывода: База-Коллектор-Эмиттер.
Если транзистор перевернуть верх ногами и базой поставить к себе, то налево Эмиттер, на право Коллектор.


Зажимаем в тисочки


Берем напильничек


Спиливаем на выводе эмиттера


Появилось отверстие аккуратно иголочкой убираем фольгу


Фототранзистор готов, пользуемся!

Фототранзистор и фотодиод - это электронные приборы, реагирующие на свет.

Фототранзисторы относятся к классу оптоэлектронных компонентов, также как фотодиоды, фоторезисторы и светодиоды .

При попадании света на фототранзистор его ток увеличивается, что позволяет использовать фоторанзисторы в качестве датчиков света, которые одновременно с преобразованием светового сигнала в электрический усиливают последний.

Основой фототранзистора служит полупроводниковый монокристалл, который заключают в прозрачный защитный корпус, либо в корпус с прозрачным окном. Прозрачность корпуса обеспечивает доступность базы фототранзистора для светового облучения, за счёт чего появляется возможность управлять прохождением электрического тока с помощью света.

При отстутствии падающего на базу света через фототранзистор протекает незначительный ток, который обычно не превышает десятков наноампер (нА). Такой ток называют темновым током. Кроме величины темнового тока фототранзисторы характеризуются интегральной чувствительностью - отношением фототока к величине падающего света.

Фототранзисторы могут иметь три или два вывода, в последнем случае используется только коллектор и эмиттер. Подключение двухвыводного фототранзистора похоже на включение обычного фотодиода, которые также достаточно часто используют в качестве основы для фотодатчиков у роботов.

Фотодиод представляет собой диод, в котором обеспечена возможность воздействия света на полупроводниковый переход. Воздействие света вызывает напряжение на выводах фотодиода или протекание тока в цепи, в которую включен фотодиод.

Обозначения фотодиодов на схемах

Условное обозначение фотодиода на схемах очень похоже на обозначение обычного диода с двумя направленными на него стрелками. Не стоит путать обозначение фотодиода с обозначением светодиода, у которого стрелки направлены от него.

В отличие от фототранзисторов, фотодиоды только преобразуют свет в электрический ток, но не усиливают его. Кроме того, фототранзисторы обладают большей, чем фотодиоды, чувствительностью - порядка сотни миллиампер на люмен.

Фоторезисторы также применяются при построении датчиков света. Сопротивление фоторезистора уменьшается при воздествии на него света. Основным недостатком фоторезисторов является их достаточно большая инерционность, влияющая на скорость работы датчиков, в основе которых используется фоторезистор.

Важной характеристикой фототранзисторов и фотодиодов является диапазон спектра, в котором они имеют наибольшую чувствительность. Помимо фототранзисторов, работающих в видимом диапазоне световых волн, достаточно распространенными являются фототранзисторы инфракрасного диапазона (ИК-фототранзисторы).


Жизнь для человека становится с каждым днем комфортнее. Появляются новые изобретения, устройства, выполняющие работу без человека. Таким устройством служит простейшее фотореле. Его покупают в магазине, сделать фотореле своими руками – экономнее и интереснее. Под руками всегда найдутся нужные инструменты и детали.

Соберем фотореле своими руками.

Я купил полевой транзистор. Эту схему я применял для подсветки гаража. Работает уже около двух месяцев, проблем нет. Работает от одного аккумулятора, через , повышающий. Использую два аккумулятора, припаял их к DC преобразователю, выставил на нем 12 вольт. На выходе сейчас 12 вольт, подключаем светодиодную ленту, она загорается.

Переходим к схеме фотореле. Сделаем чтобы работала светодиодная лента, мы выключаем свет. А когда включаем, она будет гаснуть.

Как собрать схему, которая будет работать? Никаких заумных схем из радиоэлектроники мы использовать не будем, так как в них ничего не понятно. Мы будем использовать свою схему фотореле, более понятную каждому человеку.

Схема фотореле состоит из транзистора, блока питания, резистора (сопротивления), светодиодная лента и фоторезистор. Берем транзистор и подписываем его ножки. Крайняя левая ножка – это затвор, крайняя правая – это исток, средняя – сток. Откладываем транзистор в сторону. Наш фоторезистор подключается к затвору и к истоку. Минусовой провод от светодиодной ленты подключается на исток, плюсовой провод ленты подсоединяем на резистор. Плюсовой провод также идет с блока питания на резистор. То есть, к резистору будут подключаться два провода: от светодиодной ленты и от блока питания плюсовые.

Далее, провод от резистора провод идет на затвор транзистора. То есть, к затвору транзистора будут подходить провод от фоторезистора, от резистора (два провода). Минусовой провод от блока питания мы подключаем к истоку. Это схема для работы подсветки в темноте, а при включении света отключалась.

Давайте ее соберем и посмотрим, как она работает. Берем транзистор, фоторезистор, припаиваем к ножкам паяльником. Берем резистор на несколько килоом. Его размер особо не важен, так как его нужно подбирать под себя. Можно поставить больше или меньше, будет меняться чувствительность датчика. В зависимости от освещения и сопротивления резистора у нас будет загораться подсветка. Берем светодиодную ленту, минусовой провод припаиваем к стоку, то есть, к средней ножке. Припаиваем плюсовой провод к резистору к другому его концу.

Такой вид нашего промежуточного итога сборки схемы фотореле своими руками:

Мы припаяли фоторезистор к крайним ножкам транзистора. Минусовой контакт от светодиодной ленты припаяли к средней ножке. Плюсовой контакт через резистор припаяли к левой крайней ножке (затвору).

Берем блок питания, минусовой контакт, припаиваем его к крайней правой ножке (истоку). Плюсовой контакт от блока питания мы припаиваем к резистору, туда же, куда припаяли плюсовой контакт от светодиодной ленты. Такая схема у вас должна получиться, по ранее нарисованной схеме.

Проверим работу схемы фотореле своими руками. Закрываем фоторезистор, загорается подсветка. Эта схема элементарная, очень дешевая. Радиодетали стоят сущие копейки.

Сфера применения фотореле.

Этот прибор используется в различные периоды суток, на садовом участке. С помощью него открывают жалюзи, охраняют дом.

Схема фотореле.

Схема фотореле включает в себя два транзистора, сопротивление, диод, фоторезистор. Транзистор применяется КТ315Б, который включен как составной. Нагрузка у него – обмотка реле. Это дает усиление входа, позволяющее включение со значительным сопротивлением.

При повышении света на фоторезистор, который включен между базой 1-го транзистора, открывается 1-й транзистор и №2. Появляется ток коллектора 2-го транзистора, реле срабатывает, контакты замыкаются, и подключают нагрузку. Так работает механизм действия прибора.

Чтобы защитить схему от электродвижущей силы индукции во время выключения реле подключен диод КД522. Чтобы настроить нужную чувствительность 1-го транзистора подключается транзистор с номинальным сопротивлением 10 килоом.

Фотореле служит для освещения, помещений, домов. Схема зависит от множества выводов к нагрузкам.

В электрическом щите ставят автоматические выключатели от замыкания и перегрузок.

Источником питания такого реле производится от постоянного тока от 5 до 15 вольт. Если источник напряжения рассчитан на 6 вольт, то применяется фотореле РЭС-9.

Чтобы спаять схему, лучше сделать плату. На плате закрепить корпус, детали, просверлить отверстия, сделать путем пайки.

Для настройки реле нужно зайти в темную комнату, где можно включать свет. Подбирается нужный порог включения света резистором переменной величины. Вместо него ставят постоянный резистор.

Метод сборки фотореле.

Сложными приборами делают фотореле своими руками из трех составляющих. Таким прибором является со встроенным в него , ток которого 4 ампера, напряжение 600 вольт. Схема состоит из Q6004LT, резистора, фоторезистора. Напряжение – 220 вольт. На свету фоторезистор дает небольшое сопротивление. На электроде управления существует маленькое напряжение. Ток на нагрузку не идет. При затухании света фоторезистор дает увеличение сопротивления, импульсы повышаются. Когда напряжение достигнет 40 вольт, симистор открывается, свет включается.

Настраивается схема резистором. Первое сопротивления равно 47 килоом. Оно подбирается от освещенности и фоторезистора. Марка фоторезистора может быть любой.

Прибор Q6004LT позволяет подсоединять к реле мощность 0,5 кВт и более, с дополнительным охлаждением. Существуют приборы и с более мощными характеристиками.

Достоинством такой схемы реле является небольшое количество радиодеталей, нет необходимости подключать блок питания, можно использовать нагрузку большой мощности.

Установка такой схемы не сложная, так как включает в себя мало элементов. Настраивание также не представляет сложности, и состоит в том, чтобы установить ступень сработки включения схемы освещения.

Выводы:

  1. Во многих системах регулирования применяется фотореле.
  2. Имеется множество схем и систем фотореле с датчиками: фототранзисторами, фотодиодами, фоторезисторами.
  3. Самому своими руками можно сделать схемы фотореле с наименьшим количеством элементов.

Ремонт фотореле IEK ФР-602.

Предварительно разбираем корпус, производим ремонт фотореле. Реле срабатывает в зависимости от освещенности, и должно включаться освещение. У нас не работает фотореле. Внутри корпуса схема на фото:

Два проводка я подпаял сам, нашел неисправный элемент. Это на 24 вольта. Он оказался пробит в обоих направлениях. Это можно проверить мультитестером.

Когда я выпаял стабилитрон, начал разбираться со схемой. Пытался включить лампочку, без стабилитрона. Там есть датчик, который реагирует на свет. Мы его прикрываем, лампочка загорается. Далее, когда открываем датчик света, то ничего не происходит, так как стабилитрон пробит, не работает фотореле. Будем менять стабилитрон. Так как росло напряжение в точке стабилитрона, где стоит конденсатор на 100 мкФ на 50 вольт. Этот конденсатор я тоже решил заменить. Напряжение росло больше, чем на 50 вольт. Если темно, то напряжение падает в этой точке до 18 вольт, а если светло, то поднимается до 80-90 вольт. Стабилитрон должен был стабилизировать это напряжение. Поэтому конденсатор нагрелся и раздулся.

Чтобы в будущем не иметь различных сюрпризов, все перепаяем. Выпаяем конденсатор, не путаем полярность. Минус обозначен белой штриховкой. Впаиваем новый конденсатор. Стоимость ремонта фотореле составляет пока 10 рублей. Поэтому, ремонтировать стоит. Конденсатор, на котором поднималось напряжение выше номинального, заменен. Далее, прозвоним новый стабилитрон на исправность. В одну сторону он открывается, у него есть сопротивление. В другую сторону не открывается, то есть, прозванивается как диод. Он на 24 вольта.

На схеме стабилитрон обозначается как Z1. На плате видна слегка подгоревшая площадка стабилитрона. Он грелся. У стабилитрона есть черная полоска. Припаиваем ей к белой риске на плате. Вместо нагрузки у нас подключена лампочка для проверки работоспособности фотореле. А также, посмотрим, какой напряжение в точке стабилитрона при низкой освещенности и при хорошем свете. Откусываем ножки, которые не нужны. Подключена вилка, которая втыкается в розетку. Проверяем правильность припайки проводов. На мультиметре ставим напряжение на 200 вольт. Закрываем датчик от света, нагрузка (лампочка) включилась. Открываем датчик, становится светло, лампа отключилась. Схема работает.

Теперь проверим тестером, что происходит с напряжением. При открытом датчике мультитестер показывает 26 вольт. При закрытом датчике напряжение падает до нуля, включается лампа, напряжение 18 вольт. При свете напряжение опять растет, достигает 26 вольт, и срабатывает стабилитрон. Остается собрать все детали в корпус, и ремонт фотореле закончен. Есть схема фотореле в Интернете.

Простое фотореле.

Его можно использовать для подсвечивания DVD. Есть два типа схемы. В одном включение активируется светом, а в другом – темнотой. Когда свет светит на фотодиод, то открывается транзистор и загорается светодиод №2. Резистором подстраиваем чувствительность. Фотодиод можно использовать от компьютерной мышки. можно взять любой инфракрасный. Из-за его применения не будет помех от света. Вместо светодиода №2 – любой или несколько светодиодов. Можно даже использовать лампочку. Ниже показаны две схемы:

В DVD не всегда используется фотодиод. В нем есть микросхема. Если нет фотодиода, то можно использовать фоторезистор. А если и этого нет, то найдите старые транзисторы серии МП42 или МП39, верхнюю часть корпуса обточите напильником. Получится окошко, которое будет служить фотодиодом. У него достаточная чувствительность для такого применения. Еще можно поставить инфракрасный диод от пульта управления телевизором.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.