Защита бп от кз и перегрузок. Как сделать защиту от переполюсовки, от кз для блока питания своими руками

При наладке различной электро-радио аппаратуры бывает все идет не так как нам хотелось бы и происходит КЗ (короткое замыкание). Короткое замыкание опасно как для устройства, так и для человека, налаживающего его. Для защиты аппаратуры можно использовать устройство, схема которого представлена ниже.

Принцип работы

В качестве контролирующего элемента от короткого замыкания выступает реле Р1, оно подключено параллельно нагрузке. При подаче напряжения на вход устройства через обмотку реле протекает ток, реле подключает нагрузку, при этом лампа не горит. Во время короткого замыкания напряжение на реле резко упадет, и оно отключит нагрузку, лампа при этом загорит и просигнализирует о КЗ. Резистор R1 служит для регулировки порога срабатывания по току, его номинал рассчитывается по формуле

R1=U сети /I доп

U сети –напряжение сети, I доп –максимально допустимый ток.

Например напряжение сети 220В, ток при котором реле будет срабатывать 10А. Считаем 220 В/10 А=22 Ом.

Мощность реле рассчитывается по формуле 0,2 * I доп

Резистор R1 следует брать мощностью от 20 Вт.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Список используемой литературы: В.Г. Бастанов Московский рабочий. «300 Практических советов»

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки , которые работают безотказно и не требуют никакой наладки.

Вариант 1

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

В случае внедрения такой защиты в , стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности . В среднем стоит использовать реле на 15-20 А.

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Из-за высокой скорости реагирования эта схема гарантированно защитит при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

Итог

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Прикрепленные файлы:

Как сделать простой Повер Банк своими руками: схема самодельного power bank

Термином «короткое замыкание» в электротехнике называют аварийный режим работы источников напряжения. Он возникает при нарушениях технологических процессов передачи электроэнергии, когда на действующем генераторе или химическом элементе выходные клеммы замыкаются накоротко (закорачиваются).

При этом вся мощность источника мгновенно прикладывается к закоротке. Через нее протекают огромные токи, способные сжечь оборудование и нанести электрические травмы близкорасположенным людям. Для прекращения развития подобных аварий используются специальные защиты.

Какие бывают виды коротких замыканий

Природные электрические аномалии

Они проявляются во время грозовых разрядов, сопровождающихся .

Источниками их образования являются высокие потенциалы статического электричества различных знаков и величин, накопленные облаками при их перемещении ветром на огромные расстояния. В результате естественного охлаждения при подъеме на высоту пары влаги внутри облака конденсируются, образуя дождь.

Влажная среда обладает низким электрическим сопротивлением, которое создает пробой воздушной изоляции для прохождения тока в виде молнии.


Электрический разряд проскакивает между двумя объектами, обладающими разными потенциалами:

  • на приближающихся облаках;
  • между грозовой тучей и землей.

Первый вид молнии опасен для летательных аппаратов, а разряд на землю способен разрушить деревья, здания, промышленные объекты, воздушные линии электропередач. Для защиты от него устанавливают молниеотводы, которые последовательно выполняют функции:

1. приема, притяжения потенциала молнии на специальный улавливатель;

2. пропускания полученного тока по тоководу к контуру заземления здания;

3. отвода высоковольтного разряда этим контуром на потенциал земли.

Короткие замыкания в цепях постоянного тока

Гальванические источники напряжения либо выпрямители создают на выходных контактах разность положительных и отрицательных потенциалов, которые в нормальных условиях обеспечивают работу схемы, например, свечение лампочки от батарейки, как показано на рисунке ниже.

Электрические процессы, происходящие при этом описывает математическое выражение .


Электродвижущая сила источника распределяется на создание нагрузки во внутреннем и внешнем контурах за счет преодоления их сопротивлений «R» и «r».

В аварийном режиме между клеммами батарейки «+» и «-» возникает закоротка с очень низким электрическим сопротивлением, которая практически исключает протекание тока во внешней цепи, выводя эту часть схемы из работы. Поэтому по отношению к номинальному режиму можно считать, что R=0.

Весь ток циркулирует только во внутреннем контуре, обладающим маленьким сопротивлением, и определяется по формуле I=E/r .

Поскольку величина электродвижущей силы не изменилась, то значение тока очень резко возрастает. Такое короткое замыкание протекает по закорачиваемому проводнику и внутреннему контуру, вызывает внутри них огромное выделение тепла и последующее нарушение конструкции.

Короткие замыкания в цепях переменного тока

Все электрические процессы здесь тоже описываются действием закона Ома и происходят по аналогичному принципу. Особенности на их прохождение налагают:

    применение схем однофазных или трехфазных сетей различной конфигурации;

    наличие контура заземления.

Виды коротких замыканий в схемах переменного напряжения

Токи КЗ могут возникнуть между:

    фазой и землей;

    двумя разными фазами;

    двумя разными фазами и землей;

    тремя фазами;

    тремя фазами и землей.

Для передачи электроэнергии по воздушным ЛЭП системы электроснабжения могут использовать разную схему подключения нейтрали:

1. изолированную;

2. глухозаземленную.

В каждом из этих случаев токи коротких замыканий будут формировать свой путь и иметь разную величину. Поэтому все перечисленные варианты сборки электрической схемы и возможности возникновения в них токов коротких замыканий учитываются в создании конфигурации токовых защит для них.

Внутри потребителей электроэнергии, например, электродвигателя тоже может возникнуть короткое замыкание. У однофазных конструкций потенциал фазы может пробить слой изоляции на корпус или нулевой проводник. В трехфазном электрооборудовании дополнительно может возникнуть неисправность между двумя или тремя фазами либо между их сочетаниями с корпусом/землей.

Во всех этих случаях, как и при КЗ в цепях постоянного тока, через образовавшуюся закоротку и всю подключенную к ней до генератора схему будет протекать ток короткого замыкания очень большой величины, вызывающий аварийный режим.

Для его предотвращения используют защиты, которые осуществляют автоматическое снятие напряжение с оборудования, подвергшегося действию повышенных токов.

Как выбирают границы срабатывания защиты от короткого замыкания

Все электрические приборы рассчитаны на потребление определенной величины электроэнергии в своем классе напряжения. Рабочую нагрузку принято оценивать не мощностью, а током. Его проще замерять, контролировать и создавать на нем защиты.

На картинке представлены графики токов, которые могут возникнуть в разных режимах работы оборудования. Под них подбираются параметры настройки и наладки защитных устройств.


На графике коричневым цветом показана синусоида номинального режима, который выбирается в качестве исходного при проектировании электрической схемы, учете мощности электропроводки, подборе токовых защитных устройств.

Частота промышленной синусоиды при этом режиме всегда стабильна, а период одного полного колебания происходит за время 0,02 секунды.

Синусоида рабочего режима на картинке показана синим цветом. Она обычно меньше номинальной гармоники. Люди редко полностью используют все резервы отведенной им мощности. Как пример, если в комнате висит пятирожковая люстра, то для освещения часто включают одну группу лампочек: две или три, а не все пять.

Чтобы электроприборы надежно работали при номинальной нагрузке, создают небольшой запас по току для настройки защит. Величину тока, на который их настраивают для отключения, называют уставкой. При ее достижении выключатели снимают напряжение с оборудования.

В интервале амплитуд синусоид между номинальным режимом и уставкой электросхема работает в режиме небольшого перегруза.

Возможная временна́я характеристика аварийного тока показана на графике черным цветом. У нее амплитуда превышает уставку защит, а частота колебаний резко изменилась. Обычно она имеет апериодический характер. Каждая полуволна изменяется по величине и частоте.


Любая защита от короткого замыкания включает в себя три основных этапа работы:

1. постоянное отслеживание состояния синусоиды контролируемого тока и определение момента возникновения неисправности;

2. анализ создавшейся ситуации и выдача логической частью команды на исполнительный орган;

3. снятие напряжения с оборудования коммутационными аппаратами.

Во многих устройствах используется еще один элемент - ввод задержки времени на срабатывание. Его используют для обеспечения принципа селективности в сложных, разветвленных схемах.

Поскольку синусоида достигает своей амплитуды за время 0,005 сек, то этого периода, как минимум, необходимо для ее замера защитами. Следующие два этапа работы тоже не совершаются мгновенно.

Общее время работы самых быстрых токовых защит по эти причинам чуть меньше периода одного колебания гармоники 0,02 сек.

Конструктивные особенности защит от короткого замыкания

Электрический ток, проходя по любому проводнику, вызывает:

    термический нагрев токопровода;

    наведение магнитного поля.

Эти два действия приняты за основу конструирования защитных аппаратов.

Защиты на основе принципа термического воздействия тока

Тепловое действие тока, описанное учеными Джоулем и Ленцем, используется для защиты предохранителями.

Защита предохранителями

Она основана на установке внутри пути тока плавкой вставки, которая оптимально выдерживает номинальную нагрузку, но перегорает при ее превышении, разрывая цепь.

Чем выше величина аварийного тока, тем быстрее создается разрыв схемы - снятие напряжения. При небольшом превышении тока отключение может произойти через длительный промежуток времени.


Предохранители успешно работают в электронных устройствах, электрооборудовании автомобилей, бытовой техники, промышленных устройствах до 1000 вольт. Отдельные их модели эксплуатируются в цепях высоковольтного оборудования.

Защиты на основе принципа электромагнитного воздействия тока

Принцип наведения магнитного поля вокруг проводника с током позволил создать огромный класс электромагнитных реле и защитных автоматов, использующих катушку отключения.


Ее обмотка расположена на сердечнике - магнитопроводе, в котором складываются магнитные потоки от каждого витка. Подвижный контакт механически связан с якорем, являющимся качающейся частью сердечника. Он прижимается к стационарно закрепленному контакту усилием пружины.

Ток номинальной величины, проходящий по виткам катушки отключения, создает магнитный поток, который не может преодолеть усилие пружины. Поэтому контакты постоянно находятся в замкнутом состоянии.

При возникновении аварийных токов якорь притягивается к стационарной части магнитопровода и разрывает цепь, созданную контактами.

Один из видов автоматических выключателей, работающих на основе электромагнитного снятия напряжения с защищаемой схемы, показан на картинке.


В нем используется:

    автоматическое отключение аварийных режимов;

    система гашения электрической дуги;

    ручное или автоматическое включение в работу.

Цифровые защиты от короткого замыкания

Все рассмотренные выше защиты работают с аналоговыми величинами. Кроме них в последнее время в промышленности и особенно в энергетике начинают активно внедряются цифровые технологии на основе работы и статических реле. Такие же приборы с упрощенными функциями выпускаются для бытовых целей.

Замер величины и направления тока, проходящего по защищаемой схеме, выполняет встроенный понижающий трансформатор тока высокого класса точности. Замеренный им сигнал подвергается оцифровке посредством наложения по принципу амплитудной модуляции.

Затем он поступает на логическую часть микропроцессорной защиты, которая работает по определенному, заранее настроенному алгоритму. При возникновении аварийных ситуаций логика устройства выдает команду исполнительному отключающему механизму на снятие напряжения с сети.

Для работы защиты используется блок питания, берущий напряжение от сети или автономных источников.

Цифровые защиты от коротких замыканий обладают большим количеством функций, настроек и возможностей вплоть до регистрации предаварийного состояния сети и режима ее отключения.

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками - сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Силовая часть выполнена на мощном полевом транзистор. В процессе работы он не перегревается, поэтому теплоотвод можно не использовать. Устройство одновременно является отлично защитой от переплюсовки, перегрузки и короткого замыкания в выходной цепи, ток срабатывания можно подобрать подбором резистора шунта, в нашем случае он составляет 8 Ампер, использовано 6 параллельно подключенных сопротивлений мощностью 5 ватт 0,1 Ом. Шунт можно сделать также из сопротивления мощностью 1-3 ватт.


Более точно защиту можно подстроить путем регулировки сопротивления подстроечного резистора. При коротком замыкании и перегрузке на выходе, защита почти сразу сработает, отключив блок питания. О сработавшей защите подскажет светодиод. Даже при замыкании выхода на 30-40 секунд, полевик остается почти холодным. Его тип не критичен, подойдут практически любые силовые ключи с током 15-20 Ампер на рабочее напряжение 20-60 Вольт. Отлично подойдут транзисторы из серии IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные.

Данный вариант схемы будет полезен автолюбителям в роли защиты зарядного устройства для свинцовых аккумуляторов, если вдруг перепутаете полярность подсоединения, то с ЗУ ничего страшного не случится.

Благодаря быстрому срабатыванию защиты, ее можно отлично использовать для импульсных схем, при коротком замыкании защита сработает гораздо быстрее, чем перегорят силовые ключи импульсного БП. Конструкция подойдет также для импульсных инверторов, в роли токовой защиты.

Защита от короткого замыкания на MOSFET-транзисторе

Если в ваших блоках питания и ЗУ для переключения нагрузки используется полевой транзистор (MOSFET), то вы можете легко добавить в такую схему защиту от короткого замыкания или перегрузки. В данном примере мы будем применять внутреннее сопротивление RSD, на котором возникает падение напряжения, пропорциональное току, идущему через MOSFET.

Напряжение, следующее через внутренний резистор, может регистрироваться с помощью компаратора или даже транзистора, переключающегося при напряжении уровнем от 0.5 В, т.е, можно отказаться от применения токочувствительного сопротивления (шунта), на котором обычно возникает излишек напряжения. За компаратором можно следить с помощью микроконтроллера. В случае КЗ или перегрузки программно можно запустить ШИМ-регулирование, сигнализацию, аварийную остановку). Возможно также подсоединение выхода компаратора к затвору полевого транзистора, если при возникновении КЗ нужно сразу же отключить полевик.

Блок питания с системой защиты от КЗ

Современные мощные переключательные транзисторы имеют очень маленькие сопротивления сток-исток в открытом состоянии, это обеспечивает малое падение напряжения при прохождении через эту структуру больших токов. Это обстоятельство позволяет использовать такие транзисторы в электронных предохранителях.

Например, транзистор IRL2505 имеет сопротивление сток-исток, при напряжении исток-затвор 10В, всего 0,008 Ом. При токе 10А на кристалле такого транзистора будет выделяться мощность P=I² R; P = 10 10 0,008 = 0,8Вт. Это говорит о том, что при данном токе транзистор можно устанавливать без применения радиатора. Хотя я всегда стараюсь ставить хотя бы небольшие теплоотводы. Это во многих случаях позволяет защитить транзистор от теплового пробоя при внештатных ситуациях. Этот транзистор применен в схеме защиты описанной в статье « ». При необходимости можно применить радиоэлементы для поверхностного монтажа и сделать устройство виде небольшого модуля. Схема устройства представлена на рисунке 1. Она рассчитывалась на ток до 4А.

Схема электронного предохранителя

В данной схеме в качестве ключа использован полевой транзистор с р каналом IRF4905, имеющий сопротивление в открытом состоянии 0,02 Ом, при напряжении на затворе = 10В.

В принципе этой величиной ограничивается и минимальное напряжение питания данной схемы. При токе стока, равном 10А, на нем будет выделяться мощность 2 Вт, что повлечет за собой необходимость установки небольшого теплоотвода. Максимальное напряжение затвор-исток у этого транзистора равно 20В, поэтому для предотвращения пробоя структуры затвор-исток, в схему введен стабилитрон VD1, в качестве которого можно применить любой стабилитрон с напряжение стабилизации 12 вольт. Если напряжение на входе схемы будет менее 20В, то стабилитрон из схемы можно удалить. В случае установки стабилитрона, возможно, потребуется коррекция величины резистора R8. R8 = (Uпит — Uст)/Iст; Где Uпит – напряжение на входе схемы, Uст – напряжение стабилизации стабилитрона, Iст – ток стабилитрона. Например, Uпит = 35В, Uст = 12В, Iст = 0,005А. R8 = (35-12)/0,005 = 4600 Ом.

Преобразователь ток — напряжения

В качестве датчика тока в схеме применен резистор R2, чтобы уменьшить мощность, выделяющуюся на этом резисторе, его номинал выбран всего в одну сотую Ома. При использовании SMD элементов его можно составить из 10 резисторов по 0,1 Ом типоразмера 1206, имеющих мощность 0,25Вт. Применение датчика тока с таким малым сопротивление повлекло за собой применение усилителя сигнала с этого датчика. В качестве усилителя применен ОУ DA1.1 микросхемы LM358N.

Коэффициент усиления этого усилителя равен (R3 + R4)/R1 = 100. Таким образом, с датчиком тока, имеющим сопротивление 0,01 Ом, коэффициент преобразования данного преобразователя ток – напряжения равен единице, т.е. одному амперу тока нагрузки равно напряжение величиной 1В на выходе 7 DA1.1. Корректировать Кус можно резистором R3. При указанных номиналах резисторов R5 и R6, максимальный ток защиты можно установить в пределах… . Сейчас посчитаем. R5 + R6 = 1 + 10 = 11кОм. Найдем ток, протекающий через этот делитель: I = U/R = 5А/11000Ом = 0,00045А. Отсюда, максимальное напряжение, которое можно выставить на выводе 2 DA1, будет равно U = I x R = 0,00045А x 10000Ом = 4,5 B. Таким образом, максимальный ток защиты будет равен примерно 4,5А.

Компаратор напряжения

На втором ОУ, входящем в состав данной МС, собран компаратор напряжения. На инвертирующий вход этого компаратора подано регулируемое резистором R6 опорное напряжение со стабилизатора DA2. На неинвертирующий вход 3 DA1.2 подается усиленное напряжение с датчика тока. Нагрузкой компаратора служит последовательная цепь, светодиод оптрона и гасящий регулировочный резистор R7. Резистором R7 выставляют ток, проходящий через эту цепь, порядка 15 мА.

Работа схемы

Работает схема следующим образом. Например, при токе нагрузки в 3А, на датчике тока выделится напряжение 0,01 х 3 = 0,03В. На выходе усилителя DA1.1 будет напряжение, равное 0,03В х 100 = 3В. Если в данном случае на входе 2 DA1.2 присутствует опорное напряжение выставленное резистором R6, меньше трех вольт, то на выходе компаратора 1 появится напряжение близкое к напряжению питания ОУ, т.е. пять вольт. В результате засветятся светодиод оптрона. Откроется тиристор оптрона и зашунтирует затвор полевого транзистора с его истоком. Транзистор закроется и отключит нагрузку. Вернуть схему в исходное состояние можно кнопкой SB1 или выключением и повторным включением БП.